

Biosynthesis of Vitamin B₆ in Yeast. Incorporation Pattern of

Johannes Zeidler, Ram Nath Gupta, Brian G. Sayer, and Ian D. Spenser*

Department of Chemistry, McMaster University, Hamilton, Ontario, Canada L8S 4M1

spenser@mcmaster.ca

Received December 9, 2002

The biosynthetic origin of the C₃ unit, C-6,5,5', of pyridoxamine was investigated in two yeasts, Candida utilis ATCC 9256 and Saccharomyces cerevisiae ATCC 7752. The incorporation patterns within pyridoxamine bishydrochloride derived from variously multiply 13C- and 2H-labeled samples of glycerol and glyceraldehyde, established by NMR spectroscopy, indicate that the three-carbon unit C-6,5,5' of pyridoxamine is derived intact from a triose.

Introduction

It is now well-documented on the basis of genetic investigations¹⁻³ as well as by tracer studies with ¹⁵N^{4,5} and ¹³C^{6,7} that two distinct routes exist for the biosynthesis of Vitamin B₆ (pyridoxine, 1) from primary precur-

Investigations of the origin of the carbon skeleton of pyridoxine in the bacterium *Escherichia colf*⁶ as well as in yeasts7 (e.g., Saccharomyces cerevisiae), employing glucose as the general carbon source, established by tracer studies with 13C-labeled substrates that the intermediates on the route from glucose to the vitamin are different in the two types of microorganism (Schemes 1 and 2).

In E. coli the C₅ unit C-2',2,3,4,4' of the vitamin originates via 1-deoxy-D-xylulose 5-phosphate^{8,9} (4a), which is formed from two glucose catabolites: condensation accompanied by decarboxylation (i.e., loss of C-3 of glucose) of pyruvic acid (3) (derived from C-1,2,3 of glucose) with phosphoglyceraldehyde (2) (i.e., C-4,5,6 of glucose) gives rise to C-2',2,3,4,4' of the pyridoxine skeleton, from C-1,2,4,5,6 of glucose (Scheme 1). Label from [2,3-13C2]pyruvate enters C-2',2 of pyridoxol and

label from $[2,3^{-13}C_2]$ -1-deoxy-D-xylulose enters the C_5 unit C-2',2,3,4,4' of pyridoxol (1a), and unlabeled 1-deoxy-Dxylulose (4b) displaces entry of label from glucose into this unit.⁶ A kinase catalyzing the phosphorylation of 1-deoxy-D-xylulose (**4b**) has been identified in *E. coli.*¹⁰

1a X = OH 1b $X = NH_2$

In the yeast *S. cerevisiae*, by contrast, label from [2,3- $^{13}C_2$ |pyruvate did not enter the vitamin, nor did unlabeled sodium pyruvate displace entry of a glucose-derived C₂ unit into C-2',2.7 Furthermore, tracer experiments with variously ¹³C-labeled samples of glucose in this yeast, and of glucose, xylose and ribose in Candida utilis, showed that the C_5 unit C-2',2,3,4,4' of the vitamin is derived from the C₅ fragment, C-2,3,4,5,6 of glucose, via a pent-(ul)ose⁷ (**5**) (Scheme 1). Thus, label from [1,2-¹³C₂]xylose⁷ and from [1,2-13C2]ribose (expt 14, Table 1) is incorporated into C-2',2 of pyridoxamine (Figure 1B).

The evidence is compelling that the derivation of the C₅ unit C-2',2,3,4,4' of pyridoxine from glucose takes different routes in E. coli⁶ and in yeasts.⁷

The present investigation concerns the route from glucose into the remaining C_3 unit, C-6,5,5', of pyridoxine. In *E. coli* this unit, together with the N atom, is derived from glucose via 1-amino-3-hydroxyacetone 3-phosphate (**9a**). This precursor, which thus gives rise to the C₃N unit N-1,C-6,5,5', of the pyridoxine skeleton, is generated by oxidative decarboxylation (i.e., with loss of C-3 of glucose) of 4-hydroxy-L-threonine 4-phosphate11 (8a),

^{*} To whom correspondence should be addressed: Telephone: (905) 525-9140 Ext. 23245. Fax: (905) 522-2509.

^{(1) (}a) Lam, H. M.; Tancula, E.; Dempsey, W. B.; Winkler, M. E. J. Bacteriol. **1992**, 174, 1554–1567. (b) Roa, B. B.; Connolly, D. M.; Winkler, M. E. J. Bacteriol. **1989**, 171, 4767–4777.

⁽²⁾ Osmani, A. H.; May, G. S.; Osmani, S. A. J. Biol. Chem. 1999, 274, 23565-23569.

⁽³⁾ Ehrenshaft, M.; Bilski, P.; Li, M. Y.; Chignell, C. F.; Daub, M. E. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 9374–9378. (4) Tazuya, K.; Adachi, Y.; Masuda, K.; Yamada, K.; Kumaoka, H.

Biochim. Biophys. Acta 1995, 1244, 113-116.

⁽⁵⁾ Tanaka, K.; Tazuya, K.; Yamada, K.; Kumaoka, H. J. Nutr. Sci.

Vitaminol. 2000, 46, 55–57.
(6) Hill, R. E.; Himmeldirk, K.; Kennedy, I. A.; Pauloski, R. M.; Sayer, B. G.; Wolf, E.; Spenser, I. D. *J. Biol. Chem.* **1996**, *271*, 30426– 30435

⁽⁷⁾ Gupta, R. N.; Hemscheidt, T.; Sayer, B. G.; Spenser, I. D. J. Am. Chem. Soc. 2001, 123, 11353-11359.

⁽⁸⁾ Cane, D. E.; Du, S.; Robinson, J. K.; Hsiung, Y.; Spenser, I. D. *J. Am. Chem. Soc.* **1999**, *121*, 7722–7723.

⁽⁹⁾ Cane, D. E.; Du, S.; Spenser, I. D. J. Am. Chem. Soc. 2000, 122, 4213-4214.

⁽¹⁰⁾ Wungsintaweekul, J.; Herz, S.; Hecht, S.; Eisenreich, W.: Feicht, R.; Rohdich, F.; Bacher, A.; Zenk, M. H. Eur. J. Biochem. 2001, 268,

⁽¹¹⁾ Cane, D. E.; Hsiung, Y.; Cornish, J. A.; Robinson, J. K.; Spenser, I. D. J. Am. Chem. Soc. 1998, 120, 1936–1937.

SCHEME 1. Dissimilar Derivations from Glucose of C_5 Unit C-2',2,3,4,4' of Pyridoxine in *E. coli* and in Yeast

Origin of the C₅ unit C-2',2,3,4,4' of pyridoxine

SCHEME 2. Derivation of C₃ Unit C-6,5,5' of Pyridoxine in *E. coli* and in Yeast

Origin of the C₃ unit C-6,5,5' of pyridoxine

which in turn is derived from D-erythronic acid 4-phosphate 12 (7a) (i.e., from C-3,4,5,6 of glucose). Unlabeled 4-hydroxy-L-threonine (8b) displaces incorporation of label from $[^{13}C_6]$ glucose into C-6,5,5′, and label from $[2,3^{-13}C_2]$ -4-hydroxy-L-threonine and from D-[2,3- $^{13}C_2$] erythronic acid (7b) entered this site 6 (Scheme 2). Phosphorylation of these substrates must thus have taken place. A kinase catalyzing the conversion of $\bf 8b$ into $\bf 8a$ has been characterized in $\it E.~coli. ^{13}$

In yeast the C_3 unit C-6,5,5′ of pyridoxamine is likewise derived from C-4,5,6 of glucose as an intact unit⁷ (Scheme 2).

The correspondence, in yeast, of the pyridoxine carbon atoms with those of glucose is shown in Schemes 1 and 2. (Numbers in the structures in Schemes 1 and 2 refer to the carbon atoms of D-glucose from which the carbon atoms of pyridoxine and of the intermediates are derived.)¹⁴

The mode of entry of label from glucose into the C_3 unit C-6,5,5' of pyridoxine thus appears to be similar in E. coli and in yeast (Scheme 2). Whereas the steps in E. coli are now well-understood, no information on the process in yeast is available. The present study was carried out to gain information on the intermediates on the route from glucose into this C_3 unit in yeast. The evidence here presented shows that there are significant differences in the derivation of this unit from glucose in the two types of microorganism.

Results and Discussion

The first experiments that were carried out tested the incorporation into pyridoxamine (1b) in two yeasts, S. cerevisiae ATCC 7752 (= IFO 1234) and C. utilis ATCC 9256, of compounds that were known to serve as precursors in E. coli. It was found (expt 1, Table 1) that in S. cerevisiae label from [2,3-13C₂]-4-hydroxy-L-threonine (**8b**) did not enter pyridoxamine, nor did unlabeled D-erythrose (**6b**) (expt 2), D-erythronic acid, ⁷ (**7b**) or 1-amino-3hydroxyacetone (**9b**) (expt 3) displace [¹³C₆]glucosederived label from C-6,5,5'. In C. utilis incubation with [13C₆]glucose in the presence of 1-amino-3-hydroxyacetone (9b) (expt 9) did not lead to displacement of label from this C₃ unit. Since in E. coli [2,3-13C₂]-4-hydroxy-Lthreonine, [2,3-13C2]-D-erythronic acid (7b) and aminohydroxyacetone phosphate¹¹ (9a) each serves as a precursor of the C₃ unit, C-6,5,5', it is clear that in yeast, unlike in *E. coli*, uptake or phosphorylation of these compounds is inhibited or that the route from glucose into this unit is different.

^{(12) (}a) Lam, H.-M.; Winkler, M. E. *J. Bacteriol.* **1990**, *172*, 6518–6528. (b) Man, T.-K.; Zhao, G.; Winkler, M. E. *J. Bacteriol.* **1996**, *178*, 2445–2449 and references quoted therein.

⁽¹³⁾ Zhao, G.; Winkler, M. E. *FEMS Microbiol. Lett.* **1996**, *135*, 275–280

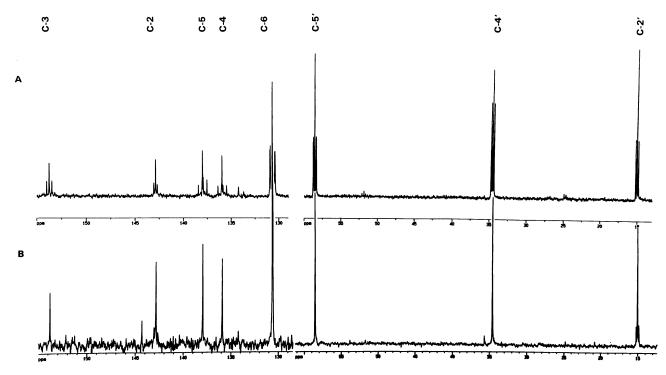

⁽¹⁴⁾ As a result of the triose phosphate isomerase and aldolase reactions, carbon atoms derived from C-1,2,3 of glucose also show labeling from C-6,5,4 and vice versa.

TABLE 1. Incubation of Yeast Cultures with ¹³C-Labeled Substrates

TABLE 1.	Incubation of Yeast Cultures with ¹³ C-	Labeled Substrates		
expt no.	labeled substrate	weight (mg/L)	incubation (h)	
Saccharomyces cerevisiae				
1	D-glucose	4000	17	no incorp
	[2,3- ¹³ C ₂]-4-hydroxy-L-threonine	360	4.0	1. 1
2	D-[¹³ C ₆]glucose	1000	18	no displ
	D-glucose D-erythrose	2000 1900		
3	D-erythrose D-[¹³ C ₆]glucose	1000	18	no displ
3	D-glucose	4000	10	no dispi
	1-amino-3-hydroxyacetone	1750		
4	D-[¹³ C ₆]glucose	1000	12	no displ
	D-glucose	4000		r
	L-aspartic acid	1500		
5	D-[13C ₆]glucose	1000	17	no displ
	D-glucose	4000		
	glycolaldehyde	500		11. 1
6	D-[¹³ C ₆]glucose	1000	44	no displ
	D-glucose DL-hydroxyaspartic acid	4000 2000		
7	D-[13C ₆]glucose	1000	17	no displ
,	D-glucose	4000	17	no dispi
	DL-isoserine	2000		
		: D-Glucose as General Carbo	C	
8	D-[¹³ C ₆]glucose	1000	on Source 17	no displ
0	D-glucose	4000	17	no dispi
	fumaric acid	2000		
9	D-[¹³ C ₆]glucose	1000	22	no displ
	D-glucose	4000		1
	1-amino-3-hydroxyacetone	850		
10	D-[¹³ C ₆]glucose	1000	17	no displ
	D-glucose	4000		
4.4	DL-1-amino-2,3-dihydroxy-propane	2000	4.77	11. 1
11	D-[¹³ C ₆]glucose	1000	17	no displ
	D-glucose L-homoserine	4000 1000		
12	D-[¹³ C ₆]glucose	1000	16	no displ
12	D-glucose	4000	10	no dispi
	DL-glyceraldehyde	2000		
13	D-[¹³ C ₆]glucose	1000	20	no displ
	D-glucose	4000		•
	D-glyceraldehyde	1800		
19	D-glucose	3750	22	incorp (Figure 3C)
	$[1,1,2,3,3-{}^{2}H_{5}]$ glycerol	1250		
		s: D-Xylose as General Carbo		
14	D-xylose	1000	72	incorp (Figure 1B)
	D-ribose	3000		
15	D-[1,2- ¹³ C ₂]]ribose	1000 4000	18	no incorp
13	D-xylose [2,3- ¹³ C ₂]succinic acid	1500	10	по пісогр
16	D-xylose	3500	21	incorp (Figure 2B)
10	[1,3- ¹³ C ₂]glycerol	1500	~1	meorp (rigare 22)
17	D-xylose	4000	20	incorp (Figure 3B)
	D-[3,3-2H2]- glyceraldehyde	1000		1 . 3
18	D-xylose	3750	22	incorp
	$[1,1,2,3,3-{}^{2}H_{5}]$ glycerol	1250		
20	D-xylose	3600	20	incorp (Figure 3D)
0.1	(R) - $[1,1$ - 2 H ₂]glycerol	1400	00	(Et OE)
21	D-xylose (<i>S</i>)-[1,1- ² H ₂]glycerol	3600 1450	20	no incorp (Figure 3E)
22	D-xylose	5000	23	incorp (Figure 3F)
~~	D ₂ O	50%	۵J	month (rigure ar)
23	D-xylose	3750	23	incorp
	glycerol	1250		· · · r
	D_2O	50%		

In further experiments, compounds were tested that are derivable from glucose and whose incorporation into pyridoxine in yeast had been reported in early work: label from $[2,3^{-13}C_2] succinic \ acid^{15}$ (expt 15) was not incorporated, while fumaric acid^{15} (expt 8), L-aspartic acid^{16,17} (expt 4), or glycolaldehyde^{17} (expt 5) did not displace entry of label from $[^{13}C_6] glucose$ into C-6,5,5′ of

pyridoxamine. Other compounds whose potential incorporation was examined appeared to have structural features analogous to those required to generate the segment N-1,C-6,5,5′ of the pyridoxine skeleton (Scheme 3). These were DL-1-amino-2,3-dihydroxypropane (10)

FIGURE 1. 13 C NMR spectra of samples of pyridoxamine bis-HCl derived from incubation of *Candida utilis* in the presence of (A) D- $[^{13}$ C₆]glucose (ref 7, Figure 3A) and (B) D- $[^{12}$ C₂]ribose (expt 14).

(expt 10), L-homoserine (11) (expt 11), DL-threo-3-hydroxy-aspartic acid (13) (expt 6), and DL-isoserine (14) (expt 7). None of them displaced entry of 13 C from [13 C₆]glucose into pyridoxamine.

Since in yeast an intact glucose-derived C_3 fragment had been found to generate C-6,5,5′ of pyridoxamine,⁷ the possible derivation of this fragment from a triose must be examined. Experiments with C_3 compounds related to glucose were performed with C. utilis, a yeast that has much higher permeability than S. cerevisiae to glycerol and glyceraldehyde.¹⁸ Attempts to demonstrate incorporation of DL- or D-glyceraldehyde (expts 12 and 13) by displacement of label from [$^{13}C_6$]glucose failed. The close metabolic relationship of glucose and glyceraldehyde 3-phosphate presumably results in nonspecific displacement of label from [$^{13}C_6$]glucose. Alternatively, uptake of glyceraldehyde into the cells may be inhibited in the presence of excess glucose in the medium.

In further experiments D-glucose was replaced by D-xylose, which C. utilis can utilize as general carbon source. No displacement experiments were carried out on uniformly 13 C-labeled xylose, whose cost is astronomical, whereas the price of commercially available 13 C-labeled and particularly of 2 H-labeled samples of glycerol and glyceraldehyde is affordable.

The result of an experiment with $[1,3^{-13}C_2]$ glycerol (expt 16), with D-xylose as the general carbon source, showed that this C_3 compound entered the C_3 unit C-6,5,5′ of pyridoxamine: comparison of the ^{13}C NMR

spectrum of this sample (Figure 2B) with that of natural abundance ^{13}C pyridoxamine (Figure 2A) showed that in the former the signals due to C-6 (131.1 ppm) and C-5′ (58.8 ppm), as well as that due to C-4′ (34.9 ppm), were enriched, relative to the signal due to C-2′ (15.2 ppm), by a factor of 2. Since it is most unlikely that glycerol should have lost one of the ^{13}C -enriched terminal carbon atoms, leaving the resulting two carbon fragment to be incorporated separately and equally into C-6,5 and C-5,5′ of pyridoxamine, this result, together with the earlier finding that a C3 unit from $[^{13}\text{C}_6]$ glucose was incorporated intact, provides evidence for the derivation of C-6,5,5′ of pyridoxamine from a compound related to glycerol. 19

With D-xylose as the general carbon source and D-[3,3- 2 H₂]glyceraldehyde as the labeled substrate (expt 17), deuterium was detected at C-5′ of pyridoxamine (Figure 3B). This observation is consistent with the earlier finding that label from [6,6- 2 H₂]glucose had entered this site. Glycolysis converts C-4,5,6 of [6,6- 2 H₂]glucose into C-1,2,3 of [3,3- 2 H₂]glyceraldehyde 3-phosphate (2).

Surprisingly, a similarly labeled pyridoxamine was obtained when $[1,1,2,3,3-{}^2H_5]$ glycerol (expt 18) served as

⁽¹⁶⁾ Sato, K.; Suzuki, T.; Sahashi, Y. Vitamins (Jpn) **1965**, 31, 356–358.

⁽¹⁷⁾ Schroer, R. A.; Frieden, E. H. Proc. Soc. Exp. Biol. 1973, 142, 369–373.

⁽¹⁸⁾ Gancedo, C.; Gancedo, J. M.; Sols, A. Eur. J. Biochem. 1968, 5, 165–172

⁽¹⁹⁾ Since glycerol serves as a precursor also of pentoses, i.e., of the source of the C_5 unit C-2′,2,3,4,4′ of pyridoxamine, it was not unexpected that enrichment was detectable also at C-4′. Since signal strength due to the aromatic carbon atoms other than C-6 is much less intense than signal strength due to the peripheral C atoms of pyridoxamine, it was not possible to evaluate enrichment at C-3. In an earlier study of the incorporation of label from [1,3-¹⁴C]glycerol into the pentose-derived C_5 unit C-4′,4,5,6,7 of the thiazole unit of thiamin in yeast, label was shown to be present at the thiazole C atoms that are derived from C-1 (28%), C-2 (12%), C-3 + C-4 (30%), and C-5 (30%), respectively, of the pentose. A similar distribution of label into the pentose-derived segment of pyridoxamine in yeast leads to predicted labeling within pyridoxamine at C-2′ (28%), C-2 (12%), C-3 + C-4 (30%), and 4′ (30%), ²0′ (30%)

SCHEME 3. Compounds That Did Not Spare Incorporation of Label from D-[$^{13}C_6$]Glucose into C_3 Unit C-6,5,5′ of Pyridoxine in Yeast and Are Therefore Unlikely To Be Intermediates in the Biosynthesis

Incorporation pattern of [13C₆]glucose into pyridoxamine in yeast

[
$$^{13}C_6$$
]glucose $\stackrel{\text{HO}}{\longrightarrow}_{\text{OO}}$ $\stackrel{\text{OH}}{\longrightarrow}_{\text{OO}}$ $\stackrel{\text{HO}}{\longrightarrow}_{\text{H}_3C}$ $\stackrel{\text{NH}_2}{\longrightarrow}_{\text{H}_3C}$

No incorporation of labeled hydroxythreonine (8b) or succinic acid (Expt. 15), and no displacement of label from [¹³C₈]glucose into C-6,5,5' of pyridoxamine in the presence of the following compounds was observed:

the labeled substrate. Deuterium was confined to the C-5′ site. None was present at C-6. Similarly, with [1,1,2,3,3- 2H_5]glycerol as the tracer and D-glucose as the general carbon source (expt 19, Figure 3C), deuterium was located at C-5′ of pyridoxamine, with minor incorporation into C-4′ and none into C-6. Metabolic oxidation of [1,1,2,3,3- 2H_5]glycerol, via stereospecific phosphorylation, oxidation to dihydroxyacetone phosphate, followed by isomerization, would have been expected to lead to [1,-(2),3,3- 2H_3]glyceraldehyde, whose intact incorporation should have yielded [5′,5′,6- 2H_3]pyridoxamine. Yet, no label was present at C-6.

To probe whether this finding was authentic or an experimental artifact, two further experiments with glycerol were performed, this time with chirally labeled samples. In separate experiments, (R)-[1,1- 2 H₂]- and (S)-[1,1- 2 H₂]glycerol²¹ (expts 20 and 21, respectively) were administered in the presence of D-xylose as the general carbon source. The sample of pyridoxamine derived from (R)-[1,1- 2 H₂]glycerol carried label at C-5′ (Figure 3D). The sample of pyridoxamine from the (S)-[1,1- 2 H₂]-derivative (Figure 3E) was free of deuterium.

There are several possibilities for the timing of the loss of deuterium from the triose carbon atom destined to become C-6 in the course of the conversion of glycerol into glyceraldehyde phosphate and the incorporation of the latter into the pyridoxine ring system.

One possibility, trivial from the point of view of the biosynthetic process, is nonenzymic deuterium/proton exchange, either in the course of the incubation or during workup.

That exchange takes place during the incubation was shown by two experiments in which C. utilis was grown on xylose in the presence of 50% D_2O , either in the absence (expt 22, Figure 3F) or in the presence (expt 23) of unlabeled glycerol. In each case the pyridoxamine that was isolated contained deuterium, not only at C-6 but also at the other sites, C-2′, C-4′, and C-5′. Thus, non-site-specific exchange takes place during incubation and deuterium is maintained during workup, even though the solution containing pyridoxamine is exposed to rigorous conditions of pH, temperature, and pressure in the course of its isolation (see Experimental Section).

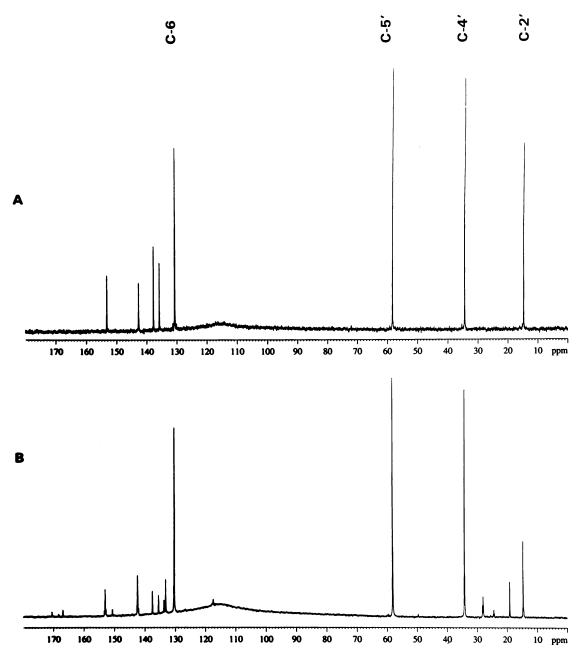
Since the lack of incorporation of deuterium from the precursor carbon atom destined to become C-6 of pyridoxamine is site-specific, we favor the view that this loss of deuterium is not due to nonenzymic D/H exchange but is the result of a specific enzyme-catalyzed metabolic process.

An investigation of the precise cause of the loss of the C-6 hydrogen is beyond the scope of the present investigation. However, it is likely that this loss results from a metabolic event in the course of conversion of glycerol into glyceraldehyde 3-phosphate. The final step in this 3-step process, i.e., the conversion of dihydroxyacetone 3-phosphate into (R)-glyceraldehyde 3-phosphate, catalyzed by triose phosphate isomerase (E.C. 5.3.1.1), is accompanied by loss of the re proton from C-1 of dihydroxyacetone 3-phosphate.²² The aldolase reaction, i.e., reversible equilibration of dihydroxyacetone phosphate plus (R)-glyceraldehyde 3-phosphate and fructose 1,6bisphosphate, catalyzed by yeast aldolase (E.C. 4.1.2.13), is accompanied by loss of the si proton from C-1 of dihydroxyacetone 3-phosphate.²³ Thus, deuterium at each of the two sites would be lost and replaced by protium when these processes occur in the course of triose metabolism during the incubation period (ca. 20 H).

It is our view that the carbon skeleton of pyridoxine in yeast is generated by union of a pentulose with a triose. We have shown earlier²⁴ that 2'-hydroxypyridoxol is an intermediate of this process. A hypothetical, chemically rational scheme for union of a pentulose with glyceraldehyde (plus a nitrogen source represented as ammonia) leading to 2'-hydroxypyridoxol and thence to pyridoxal is shown in Schemes 4 and 5.

Experimental Section

2H- and ¹³C-Labeled Compounds. $D-[^{13}C_6]glucose$, [2,3- $^{13}C_2]succinic acid$, [1,3- $^{13}C_2]glycerol$, $D-[1,2-^{13}C_2]ribose$, $D-[3,3-^{2}H_2]glyceroldehyde$, and [$^{2}H_5]glycerol$ were obtained from


⁽²⁰⁾ White, R. L.; Spenser, I. D. *J. Am. Chem. Soc.* **1982**, *104*, 4934–4943.

⁽²¹⁾ Hill, R. E.; Iwanow, A.; Sayer, B. G.; Wysocka, W.; Spenser, I. D. J. Biol. Chem. 1987, 262, 7463-7471.

⁽²²⁾ Nickbarg, E. B.; Knowles, J. R. *Biochemistry* **1988**, *27*, 5939–5947 and references quoted therein.

⁽²³⁾ Kadonaga, J. T.; Knowles, J. R. *Biochemistry* **1983**, *22*, 130–136.

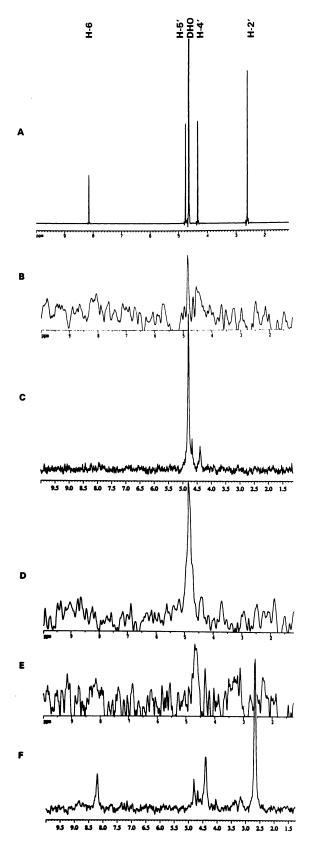
⁽²⁴⁾ Zeidler, J.; Ullah, N.; Gupta, R. N.; Pauloski, R. M.; Sayer, B. G.; Spenser, I. D. J. Am. Chem. Soc. 2002, 124, 4542–4543.

FIGURE 2. 13 C NMR spectra of (A) a natural abundance 13 C sample of pyridoxamine bis-HCl and of (B) a sample derived from incubation of *Candida utilis* in the presence of [1,3- 13 C₂]glycerol (expt 16).

commercial sources. $[2,3^{-13}C_2]$ -4-Hydroxy-L-threonine²⁵ and (R)- and (S)- $[1,1^{-2}H_2]$ glycerol²¹ were synthesized as previously described.

Microorganisms. Saccharomyces cerevisiae ATTC 7752 (IFO 1234) and Candida utilis ATTC 9256 were cultured in a synthetic minimal medium. 26 The yeast cultures (2 \times 1 L) in 2-L conical flasks on a shaking incubator at 32 $^{\circ}\text{C}$ were grown to a cell density of 1.6 OD (629 nm) or higher (12–24 h). Details of the experiments are summarized in Table 1.

Isolation of Pyridoxamine. Hydrolysis. The cells were separated from the culture by centrifugation (15 min, 7200 rpm, 5 $^{\circ}$ C) and suspended in HCl (0.1 M, 30–35 mL). Pyridoxamine bis-HCl (2.5 mg) and thiamin diphosphate (3


mg)²⁷ were added to serve as carriers, and the mixture was heated (1.5 h, 121 °C) in a steam autoclave. After cooling to room temperature the suspension was centrifuged (6000 rpm) in 15-mL conical centrifuge tubes, and the supernatant was decanted and saved. The pellet was resuspended, washed with $\rm H_2O$ (10–15 mL), and centrifuged as before, and the washings were added to the extract. The pH of the solution was raised to 4.7 by addition of potassium acetate buffer (1.0 M, pH 5.5, 3 mL, followed by 0.1 M, pH 4.7, 6 mL).

Takadiastase (150 mg) was added to the combined supernatant and washings, and the solution was incubated at 37 °C overnight.

Chromatography. Amberlite CG-50 (3 g), a weak cation-exchange resin, was washed with HCl (1 M, 3×20 mL) by

 ⁽²⁵⁾ Wolf, E.; Spenser, I. D. J. Org. Chem. 1995, 60, 6937–6940.
 (26) Himmeldirk, K.; Sayer, B. G.; Spenser, I. D. J. Am. Chem. Soc. 1998, 120, 3581–3589.

⁽²⁷⁾ Incorporation of labeled substrates into thiamin (Vitamin $B_{\rm l}$) will be reported in a separate publication.

FIGURE 3. (A) 1 H NMR spectrum of pyridoxamine bis-HCl. (B–F) 2 H NMR spectra of samples of pyridoxamine bis-HCl derived from incubation of *Candida utilis* in the presence of (B) D-[3,3- 2 H₂]glyceraldehyde (expt 17); (C) [1,1,2,3,3- 2 H₅]-glycerol (expt 19); (D) (R)-[1,1- 2 H₂]glycerol (expt 20); (E) (S)-[1,1- 2 H₂]glycerol (expt 21), and (F) 50% D₂O (expt 22).

SCHEME 4. Biosynthesis of Pyridoxine in Yeast. Phase 1: Hypothetical Mechanism for Construction of 2'-Hydroxypyridoxol from a Pentulose and a Triose

SCHEME 5. Biosynthesis of Pyridoxine in Yeast. Phase 2: Hypothetical Mechanism for Conversion of 2'-Hydroxypyridoxol into Pyridoxal

decantation to remove fine particles. The resin was suspended in deionized water, poured into a glass column (1 cm i.d.) and washed with water until the eluate was neutral. The cell hydrolysate (50 mL) was passed through the column by gravity, followed by an equal volume of water. The column was then eluted with HCl (0.1 M), and fractions were collected every 4 min. The fractions containing pyridoxamine were identified by spotting 1 μ L of each fraction on filter paper, brief exposure to ammonia vapor, and examination under long wavelength UV light (blue fluorescence). Positive fractions were combined, evaporated at 30 °C, and dried overnight in vacuo over NaOH at room temperature. The Amberlite column was regenerated by washing with HCl (1 M) and water. The dried residue from the pyridoxamine fractions was dissolved in methanol (3 \times 250 $\mu \hat{L}$) and applied to a column (1 cm i.d.) packed with silica gel in methanol (silica gel 60, 40-63 microns, 230-400 mesh, 15 mL). The column was eluted with methanol containing concentrated HCl (1% v/v). Fractions were collected every 4 min and examined for pyridoxamine as before. Positive fractions were combined, evaporated at 30 °C, and dried over NaOH in vacuo at room temperature for several H. This column separates pyridoxamine from thiamin,²⁷ which elutes later. The pyridoxamine containing residue was dissolved in water and passed through an SCX cartridge (strong cation-exchange, 500 mg) at a slow rate under mild suction. The cartridge had been prepared by successive washing with NH₄OH (1 M), methanol, HCl (1 M), methanol, and water. After passage of the pyridoxamine fraction the cartridge was washed with water and methanol and then eluted by gravity with a mixture of dichloromethane (20 mL), methanol (2 mL), and concentrated NH₄OH (0.2 mL). The eluate was evaporated to dryness, and the residue was purified by HPLC.7 After another SCX treatment (see above) the product was dissolved in methanolic HCl (1% v/v), the solution was evaporated, and the residue was dried in vacuo over NaOH. The pure pyridoxamine bishydrochloride so obtained was dissolved in D2O or deuterium-depleted water (70 μ L) and transferred to a Shigemi tube for NMR spectroscopy.

NMR Spectroscopy. Proton decoupled ¹³C NMR spectra of pyridoxamine were acquired at 125.776 and 150.92 MHz,

respectively, using a Shigemi sample tube; pulse width 90° (13.5, 13.8 μ s); spectral width 28,985.5 Hz, 36,231 Hz; recycle delay 4.6 s, 4.9 s; digital resolution 0.88 Hz, 0.55 Hz per data point, respectively. Approximately 50 000 transients were required in order to generate the 13 C spectra showing satellites.

²H spectra were acquired at 46.07 and 92.12 MHz, respectively, using a 30° pulse and a digital resolution of 0.114 and 0.158 Hz per point, respectively. The spectra were obtained at 35 °C and referenced to the residual HDO signal at 4.67 ppm.

Acknowledgment. We are indebted to the National Institute of General Medical Sciences, U.S. Public Health Service (grant GM 50778, to I.D.S.) and to the Natural Sciences and Engineering Research Council of Canada for financial support. We thank Richard M. Pauloski for skilled technical assistance.

JO020730K